

BOLETÍN CALIDAD DEL AIRE EN MANIZALES PERIODO ENERO - ABRIL DE 2018

Instituto de Estudios Ambientales, Universidad Nacional de Colombia Sede Manizales Subdirección de Evaluación y Seguimiento Ambiental CORPOCALDAS.

Carlos Mario González Duqueª, Camilo Zapata Moraª, Beatriz Helena Aristizábal Zuluagaª, Mauricio Velasco Garcíab

^a Grupo de Trabajo Académico en Ingeniería Hidráulica y Ambiental (GTAIHA), Universidad Nacional de Colombia sede Manizales.

Departamento de Ingeniería Química.

^b Corporación Autónoma Regional de Caldas, Corpocaldas.

1. RESUMEN

Se presentan en este informe los resultados del monitoreo de contaminantes atmosféricos realizado en Manizales durante el periodo de enero a abril de 2018. Se realizó el seguimiento de material particulado (PM₁₀, PM_{2.5}), y los gases ozono troposférico (O₃) y monóxido de carbono (CO). Se muestran las gráficas resumen obtenidas y tablas de estadísticos básicos (promedio, mínimo, máximo y desviación estándar). Asimismo, se muestran los resultados obtenidos para el índice de calidad el aire de material particulado PM₁₀.

2. EL SISTEMA DE VIGILANCIA DE CALIDAD DEL AIRE EN MANIZALES

El crecimiento poblacional y las actividades industriales han incrementado considerablemente las emisiones de contaminantes y sus niveles en aire ambiente. Entre los contaminantes de interés en zonas urbanizadas se destacan el material particulado (PM), además de gases como el monóxido de carbono (CO), óxidos de nitrógeno (NO_x), dióxido de azufre (SO₂), ozono troposférico (O₃). Estos contaminantes generan impactos sobre el recurso aire en ecosistemas naturales y centros urbanos.

El seguimiento a los fenómenos de contaminación del aire en Manizales y la información entregada por el Sistema de Vigilancia de Calidad del Aire (SVCA), es un sustento para tomar acciones que permitan controlar aquellas zonas donde se superen las normas de calidad del aire, además un insumo para establecer medidas de prevención donde la calidad del aire sea catalogada como perjudicial para la salud. Los datos obtenidos en la red de monitoreo de calidad del aire alimentan las bases de datos del CDIAC (Centro de Datos e Indicadores Ambientales de Caldas) y el SISAIRE del IDEAM. El CDIAC, por medio de la página web http://cdiac.manizales.unal.edu.co, pone a disposición de la comunidad información meteorológica, de calidad del aire, sismos y aguas subterráneas, de la ciudad de Manizales y el Departamento de Caldas.

Actualmente en la ciudad de Manizales se cuenta con SVCA conformado por 6 equipos para el monitoreo de material particulado (5 de PM₁₀, 1 de PM_{2.5}), aplicando técnicas de monitoreo activo. El SVCA de Manizales también cuenta con una estación automática para el monitoreo de los gases SO₂, O₃ y CO. Esta red es operada actualmente por el Grupo de Trabajo Académico en Ingeniería Hidráulica y Ambiental (GTAIHA) de la Universidad Nacional de Colombia Sede Manizales, en convenio con la Corporación Autónoma Regional de Caldas (CORPOCALDAS). La Figura 1 muestra la ubicación de las estaciones de monitoreo sobre el área urbana de la ciudad y la Tabla 1 presenta las características principales de cada estación.

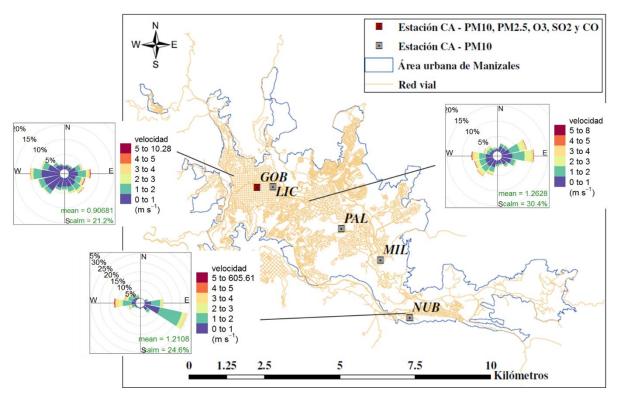


Figura 1. Mapa de Manizales con ubicación de las estaciones de calidad del aire y rosas de viento de estaciones meteorológicas representativas para el periodo enero-abril del 2018.

Tabla 1. Características de las estaciones de calidad del aire de Manizales

Estación – Contaminante	Características y fuentes de contaminantes*	Año Instalación	Latitud / Longitud	Altitud msnm
Gobernación - PM ₁₀		2009	– – N 5° 4' 6.53" – W 75° 31' 1.54" –	2125
Gobernación - PM _{2.5}	_	2009		
Gobernación - SO ₂	CU, SC - MTV, PAI	2014		
Gobernación - O ₃		2014		
Gobernación – CO		2018		
Palogrande - PM ₁₀	ZC, SR - ATV, SAI	2009	N 5° 3' 22.4" W 75° 29' 31.3"	2154
La Nubia - PM ₁₀	ZSE, SR - BTV, AZI	2009	N 5° 1' 47.0" W 75° 28' 18"	2091
Liceo - PM ₁₀	CU, SC - ATV, PAI	2000	N 5° 4' 5.01" W 75° 30' 37.58"	2156
Milán - PM ₁₀	ZC, SR - MAI, MTV	2012	N 5° 2' 48.5" W 75° 28' 48.68"	2188

^{*}Características: SR: Sector residencial, SC: Sector comercial, ZSE: Zona sureste, CU: Centro urbano, ZC: Zona central, ZI: Zona industrial. Fuentes de contaminación: ATV: Alto tráfico vehicular, MTV: Moderado tráfico vehicular, BTV: Bajo tráfico vehicular AAI: Alta actividad industrial, MAI: Moderada actividad industrial, PAI: Pequeña actividad industrial, AZI: Adyacente a zona industrial, SAI: Sin actividad industrial.

El seguimiento de material particulado (PM₁₀ y PM_{2.5}) en Manizales se realiza mediante técnicas de monitoreo activas que permiten la obtención de registros promedio diario de la concentración en aire ambiente de dichos contaminantes

(muestras de 24 horas cada tres días). De otra parte, el seguimiento de gases (O₃, SO₂ y CO) realizado actualmente en la estación automática de calidad del aire Gobernación (GOB), permite la obtención de registros cinco minutales. A partir de los registros 5 minutales se obtienen registros promedio horario (media aritmética) y registros promedio octohorario (media móvil a partir de registros horarios). Todos los registros obtenidos tanto de partículas como de gases en aire ambiente, son útiles además para comparar los límites máximos permisibles definidos en la normativa colombiana, actualmente mediante la Resolución 2254 de 2017 (MADS, 2017).

Para el presente informe, se muestran los resultados obtenidos para PM₁₀, PM_{2.5} y los gases O₃ y CO. El equipo de monitoreo de SO₂ se encuentra en un proceso de calibración y trazabilidad, por ende no se muestran los registros de este contaminante.

3. RESULTADOS MONITOREO DE MATERIAL PARTICULADO, PM₁₀ Y PM_{2.5}

ANÁLSIS DE PROMEDIOS DIARIOS PARA EL PERIODO ENERO - ABRIL DEL AÑO 2018

En la Tabla 2 se presentan los estadísticos descriptivos para las concentraciones de PM₁₀ y PM_{2.5} obtenidas durante el periodo de análisis (enero-abril de 2018). Se muestra el promedio aritmético, desviación estándar, concentración mínima, concentración máxima, el percentil 95 y el porcentaje de datos obtenidos. Los cálculos y gráficos fueron realizados con el software R y su librería de análisis para datos de calidad del aire, Openair.

Los resultados muestran como la estación Liceo registró los valores más altos de PM₁₀, con un promedio aritmético de 39 μ g/m³ (desv. std = 11.7 μ g/m³) seguida por la estación Milán con un promedio aritmético para el periodo analizado de 30 μ g/m³ (desv. std = 8.1 μ g/m³). Mayores niveles de contaminación en la estación del Liceo pueden estar influenciados por el tráfico vehicular característico de esta zona. De otra parte, en Milán la influencia de la actividad industrial y el tráfico vehicular presentado en este sector, sugiere también su incidencia en los niveles de PM₁₀ obtenidos. Con respecto a las estaciones Gobernación, Nubia y Palogrande, se observó que en general estas estaciones registraron las menores concentraciones de PM₁₀ durante el periodo evaluado, con promedios de 26 μ g/m³ en Gobernación (desv. std = 8.0 μ g/m³), 23 μ g/m³ en Nubia (desv. std = 6.4 μ g/m³) y 22 μ g/m³ en Palogrande (desv. std = 6.0 μ g/m³).

La información de la Tabla 2 se complementa con las Figuras de evolución temporal de concentraciones diarias presentadas para PM₁₀ (Figura 2) y PM_{2.5} (Figura 3). En términos de PM₁₀, se observa la diferencia entre las mayores concentraciones obtenidas en Liceo y Milán con respecto a aquellas obtenidas en las estaciones Palogrande, Nubia y Gobernación. Asimismo, se destaca que en ninguna de las estaciones de monitoreo se superó el límite máximo diario para material particulado (PM₁₀ y PM_{2.5}) establecido en la Resolución 2254 de 2017 (MADS, 2017).

Tabla 2. Estadísticos descriptivos para concentraciones promedio de PM₁₀ y PM_{2.5} (μg/m³) monitoreado en Manizales durante enero a abril del año 2018.

Estadístico*	Mes					
	Ene.	Feb.	Mar.	Abr.	Total	
Liceo PM₁₀ (μg/m³ estándar)						
Promedio	46	39	38	33	39	
Desv. Est.	9.2	14.9	12.9	6.9	11.7	
Min Max	27 - 56	15 – 57	18 – 51	20 – 43	15 – 57	
Percentil 95	56	56	51	43	55	
% datos válidos	100	90	80	100	93 (n = 36)	

Fata diations	Mes					
Estadístico*	Ene.	Feb.	Mar.	Abr.	Total	
Milán PM₁₀ (μg/m³ estándar)						
Promedio	32	28	32	29	30	
Desv. Est.	5.8	7.9	11.8	6.1	8.1	
Min Max	24 – 42	17 – 43	17 – 50	21 – 38	17 – 50	
Percentil 95	41	39	48	38	44	
% datos válidos	100	90	90	100	95 (n = 36)	
Palogrande PM₁₀ (μg/m³ estándar)						
Promedio	Promedio 21 20 26 22 22					
Desv. Est.	3.4	7.1	7.6	4.8	6.0	
Min Max	16 – 27	8 – 31	13 – 34	16 – 32	8 – 34	
Percentil 95	25	30	33	29	32	
% datos válidos	100	100	90	100	98 (n = 38)	
Nubia PM₁₀ (μg/m³ estándar)						
Promedio	22	23	26	21	23	
Desv. Est.	4.5	7.5	8.4	3.5	6.4	
Min Max	16 – 30	11 – 34	14 – 45	15 – 26	11 – 45	
Percentil 95	28	32	38	26	30	
% datos válidos	100	100	100	100	100 (n = 39)	
Gobernación PM₁₀ (μg/m³ estándar)						
Promedio	26	22	26	28	26	
Desv. Est.	7.5	10.3	8.8	5.8	8.0	
Min Max	13 – 33	9 – 41	10 – 38	22 – 39	9 – 41	
Percentil 95	33	38	36	38	38	
% datos válidos	100	100	100	100	100 (n = 43)	
Gobernación PM₂₅ (μg/m³ estándar)						
Promedio	15	9	17	20	16	
Desv. Est.	2.5	3.6	5.3	4.2	5.4	
Min Max	11 – 19	5 – 14	5 – 26	14 – 30	5 – 30	
Percentil 95	18	14	24	26	22.4	
% datos válidos	90	100	100	100	98 (n = 39)	

^{*}Estadísticos calculados a partir de los registros de concentración promedio diarios

^{**} n: Número total de datos obtenidos durante el periodo enero-abril de 2018

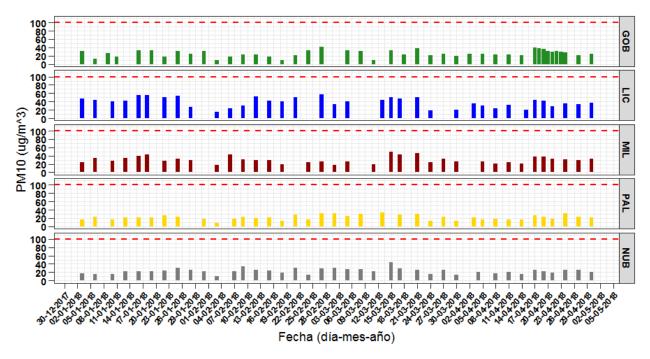


Figura 2. Evolución temporal de concentraciones de PM₁₀ diario durante enero a abril del año 2018 en el SVCA de Manizales. La línea punteada roja hace referencia al límite máximo promedio diario de PM₁₀ establecido en la Resolución 2254 de 2017.

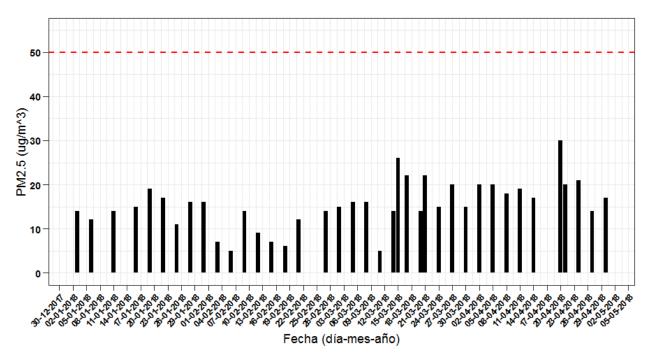
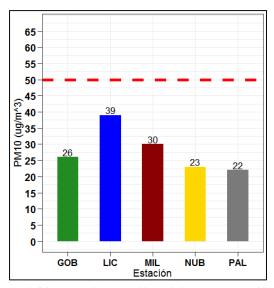


Figura 3. Evolución temporal de concentraciones de PM_{2.5} diario durante enero a abril del año 2018 en el SVCA de Manizales. La línea punteada roja hace referencia al límite máximo promedio diario de PM_{2.5} establecido en la Resolución 2254 de 2017.



ANÁLISIS DE PROMEDIOS PARA EL PERIODO DE ANÁLISIS Y COMPARACIÓN PRELIMINAR CON NORMA ANUAL

Se realizó un ejercicio de comparación del promedio aritmético obtenido para las concentraciones de PM_{10} (Figura 4) y $PM_{2.5}$ (Figura 5) para el periodo completo de análisis (enero – abril de 2018). Lo anterior con el fin de analizar de forma preliminar las diferencias respecto a los límites normativos anuales establecidos en la Resolución 2254 de 2017 para PM_{10} (50 $\mu g/m^3$) y $PM_{2.5}$ (25 $\mu g/m^3$). En ninguna de las estaciones se ha superado la norma anual colombiana. Sin embargo, es importante destacar que en el caso de PM_{10} , los promedios obtenidos en todas las estaciones superan la recomendación propuesta por la Organización Mundial de la Salud (OMS) de 20 $\mu g/m^3$ para promedio anual. Los mismo sucedió con el $PM_{2.5}$, para el cual se supera la recomendación de promedio anual de la OMS establecida en 10 $\mu g/m^3$.

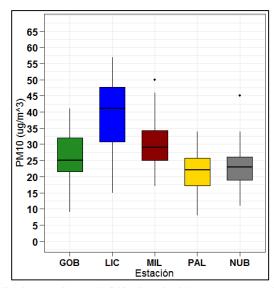
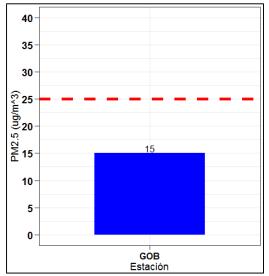



Figura 4. Diagrama de cajas (derecha) y concentración promedio de estaciones de PM₁₀ (izquierda) entre enero y abril del 2018. La línea roja punteada indica el límite normativo anual establecido en la Resolución 2254 de 2017 del MADS.

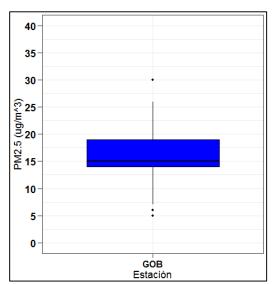


Figura 5. Diagrama de cajas (derecha) y concentración promedio de estaciones de PM_{2.5} (izquierda) entre enero y abril del 2018. La línea roja punteada indica el límite normativo anual establecido en la Resolución 2254 de 2017 del MADS.

En la Figura 6 se presenta la variación promedio de concentraciones de PM₁₀ (Figura 6a) y PM_{2.5} (Figura 6b) por días de la semana en las estaciones de la ciudad. En esta se ratifica que las menores concentraciones se obtienen los fines de semana (específicamente los días domingo) demostrando así la influencia de las emisiones por tráfico vehicular en las cercanías de las zonas de monitoreo. En las estaciones Liceo y Gobernación, los días lunes presentan también una concentración media menor a las registradas en los demás días laborales, comportamiento que se asocia al efecto de un remanente de atmósfera limpia producto de la disminución de concentración obtenida durante el domingo.

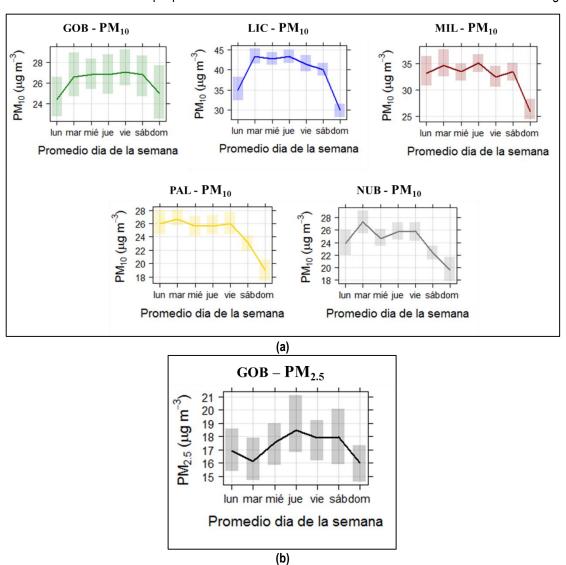


Figura 6. Variación por días de la semana de concentraciones de material particulado en periodo de enero a abril de 2018 para a) PM₁₀. b) PM_{2.5}. La barra sombreada indica la variación sobre el promedio con una confianza del 95%

4. ÍNDICE DE CALIDAD DEL AIRE, ICA, PARA PM10 EN EL SVCA DE MANIZALES

La Figura 7 presenta los índices de calidad del aire (ICA) obtenidos en las estaciones de monitoreo de PM₁₀. El ICA representa mediante un indicador de color, el estado de la calidad del aire de acuerdo a la concentración de material particulado y su posible afectación a la salud. Se destaca que la calidad del aire se clasificó como buena en la mayoría de las estaciones, sólo en Liceo se presentaron 3 días con calidad de aire moderada entre los meses de enero y

febrero. El ICA se calcula siguiendo la metodología propuesta en el Manual de Operación de Sistemas de Vigilancia de la Calidad del Aire del Protocolo para el Monitoreo y Seguimiento de la Calidad del Aire, del Ministerio de Ambiente, Vivienda y Desarrollo Territorial (actualmente Ministerio de Ambiente y Desarrollo Sostenible).

	Buena	Moderada	Dañina para la salud de grupos sensibles	Dañina para la salud	Muy dañina para la salud	Peligrosa
Rango PM ₁₀ (μg/m³)	0 - 54	55 - 154	155 - 254	255 - 354	355 - 424	425 - 504

Estación Liceo PM₁₀ marzo enero febrero abril 30 31 1 2 3 4 5 24 25 26 27 28 1 2 31 1 2 3 4 5 6 27 28 29 30 31 1 2 3 4 5 6 7 8 9 3 4 5 6 7 8 9 7 8 9 10 11 12 13 6 7 8 9 10 11 12 10 11 12 13 14 15 16 13 14 15 <mark>16</mark> 17 <mark>18</mark> 19 10 11 12 13 14 15 16 14 15 16 17 18 19 20 20 21 22 23 24 25 26 17 18 19 20 21 22 23 17 18 19 20 <mark>21</mark> 22 23 21 22 23 24 25 26 27 27 28 29 30 31 1 2 24 25 26 27 28 1 2 24 25 26 27 28 29 <mark>30</mark> 28 29 30 1 2 3 4 31 1 3 4 5 6 7 8 9 3 4 5 6 7 8 9 2 3 4 5 6 5 6 7 8 9 10 11 s d l m m j v s d I m m j v s d l m m j v s d l m m j v Estación Milán PM₁₀ enero febrero abril 30 31 1 2 3 4 5 27 28 29 30 31 1 2 24 25 26 27 28 1 2 31 1 2 3 4 5 3 4 5 6 7 8 9 3 4 5 6 7 8 9 7 8 9 10 11 12 13 6 7 8 9 <mark>10</mark> 11 12 10 11 12 13 14 15 16 10 11 12 13 14 15 16 14 15 16 17 18 19 20 13 14 15 <mark>16 17 18</mark> 19 20 21 22 23 24 25 26 17 18 19 20 21 22 23 17 18 19 20 <mark>21</mark> 22 23 21 22 23 24 25 26 27 27 28 29 30 31 1 2 **24 25 26 27 28** 1 2 24 25 26 27 28 29 30 28 29 30 1 2 3 4 3 4 5 6 7 8 9 3 4 5 6 7 8 9 31 1 2 3 4 5 6 5 6 7 8 9 10 11 s d l m m j v s d l m m j v s d I m m j v s d l m m j v Estación Gobernación PM₁₀ enero marzo febrero abril 30 31 1 2 3 4 5 27 28 29 30 31 1 2 24 25 26 27 28 1 2 31 1 2 3 4 5 6 6 7 8 **9** 10 11 12 3 4 5 6 7 8 9 3 4 5 6 7 8 9 7 8 9 10 11 12 13 13 14 15 <mark>16</mark> 17 18 <mark>19</mark> 10 11 12 13 14 15 16 10 11 12 13 14 15 16 14 15 16 17 18 19 20 20 21 22 23 24 25 26 17 18 19 20 21 22 23 17 18 19 20 21 22 23 21 22 23 24 25 26 27 27 28 29 30 31 1 2 24 25 26 27 28 29 30 28 29 30 1 2 3 4 **24 25 26 27 28** 1 2 3 4 5 6 7 8 9 3 4 5 6 7 8 9 31 1 2 3 4 5 6 5 6 7 8 9 10 11 s d l m m j v s d l m m j v s d I m m j v s d I m m j v Estación Palogrande PM₁₀ enero marzo febrero abril 27 28 29 30 31 1 2 24 25 26 27 28 1 2 31 1 2 3 4 5 6 30 31 1 2 3 4 5 6 7 8 9 <mark>10</mark> 11 12 3 4 5 6 7 8 9 3 4 5 6 7 8 9 7 8 9 10 11 12 13 13 14 15 <mark>16</mark> 17 18 <mark>19</mark> 10 11 12 13 14 15 16 10 11 12 13 14 15 16 14 15 16 17 18 19 20 20 21 22 23 24 25 26 17 18 19 20 21 22 23 17 18 19 20 21 22 23 21 22 23 24 25 26 27 27 28 29 30 31 1 2 24 25 26 27 28 1 2 24 25 26 27 28 29 30 1 2 3 4 28 29 30 5 6 7 8 9 10 11 3 4 5 6 7 8 9 3 4 5 6 7 8 9 31 1 2 3 4 5 6 s d l m m j v s d l m m j v s d l m m j v s d I m m j v Estación Nubia PM₁₀ enero febrero marzo abril 24 25 26 27 28 1 2 30 31 **1 2 3 4 5** 27 28 29 30 31 1 2 31 1 2 3 4 5 6 3 4 5 6 7 8 9 3 4 5 6 7 8 9 7 8 9 10 11 12 13 7 8 9 10 11 12 13 14 15 <mark>16</mark> 17 18 <mark>19</mark> 10 11 12 13 14 15 16 10 11 12 13 14 15 16 14 15 16 17 18 19 20 21 22 23 <mark>24</mark> 25 26 <mark>27</mark> 20 21 22 23 24 25 26 17 18 19 20 21 22 23 17 18 19 20 21 22 23 **24 25 26 27 28** 1 2 28 29 30 1 2 3 4 27 28 29 30 31 1 2 24 25 26 27 28 29 30 3 4 5 6 7 8 9 3 4 5 6 7 8 9 31 1 2 3 4 5 6 5 6 7 8 9 10 11 s d l m m j v s d l m m j v s d I m m j v s d I m m j v

Figura 7. Índice de Calidad del Aire (ICA) para PM₁₀ en Manizales durante enero a abril del año 2018

5. RESULTADOS MONITOREO DE GASES

MONITOREO DE OZONO TROPOSFÉRICO, O3

La Figura 8 muestra los resultados del monitoreo de O₃ durante enero a abril del año 2018. Se muestran los registros de concentración de O₃ horario (Figura 8a) y octohorario (Figura 8b). Este contaminante secundario presenta un perfil diurno caracterizado por mayores niveles en periodos de máxima radiación solar (medio día), comportamiento asociado a reacciones fotoquímicas de precursores de ozono (NOx y COV). Se observa que los datos presentan un perfil diurno coherente para este tipo de contaminante, con mayores concentraciones en horas de alta radiación solar y un descenso en horas de la noche. Para el cálculo de la variación de la concentración del ozono en periodos de 8 horas, se empleó la media móvil. Al compararlos valores de ozono octohorario con el límite máximo permisible (100 μg/m³), establecido en la Resolución 2254 de 2017, se observa que la norma de ozono no fue superada durante el periodo de monitoreo.

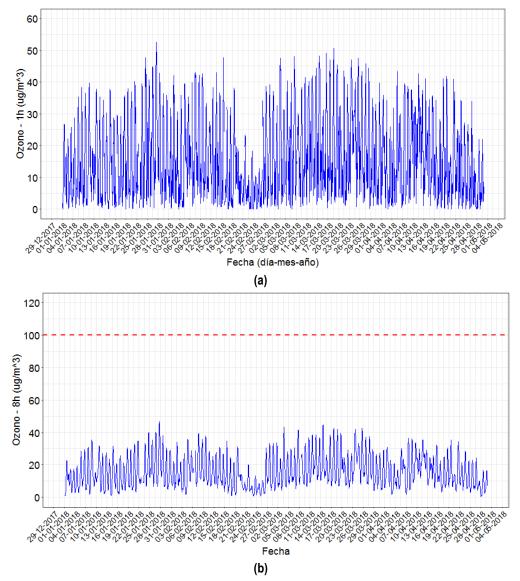


Figura 8. Variación de concentración de ozono troposférico entre enero y abril del 2018. a) Promedio horario. b) Promedio octohorario. La línea punteada roja representa el límite máximo permisible establecido en la Res. 2254 de 2017.

Un resumen de la variación promedio horaria, diaria y mensual presentada en la Figura 9 muestra que los picos máximos en las concentraciones de ozono ocurren al mediodía, alcanzando una concentración cercana a los 40 µg/m³. De igual forma, el promedio mensual máximo ocurrió en el mes de marzo, mes de mayor radiación, con un promedio mensual de radiación de 270 W/m², comparado con los promedios de radiación mensuales obtenidos en enero (234 W/m²), febrero (250 W/m²) y abril (213 W/m²).

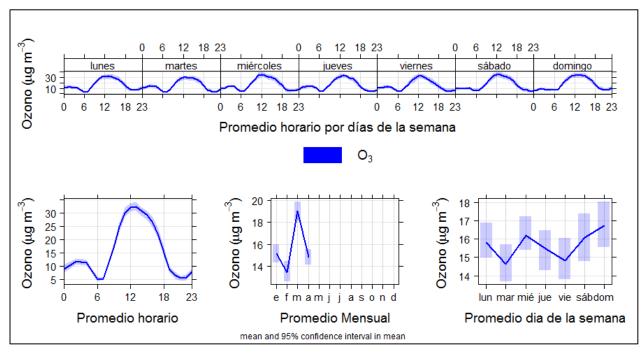


Figura 9. Variación promedio horario, diario y mensual de ozono troposférico entre enero y abril del 2018 (O₃) en la estación Gobernación.

MONITOREO DE MONÓXIDO DE CARBONO, CO

La Figura 10 muestra los resultados del monitoreo de CO durante enero a abril del año 2018. Se muestran los registros de concentración de CO horario (Figura 10a) y octohorario (Figura 10b). El monitoreo de CO comenzó el día 11 de abril de 2018 en la estación GOB. Se resalta que la concentración de CO, tanto horaria como octohoraria, no ha superado el límite promedio máximo establecido en la Resolución 2254 de 2017 (5000 µg/m³ para promedio horario y 35000 µg/m³ para promedio de 8 horas).

La variación promedio horaria, diaria y mensual presentada en la Figura 11 muestra que los picos máximos en las concentraciones del CO ocurren en las horas pico de tráfico vehicular al inicio y fin del horario laboral (alrededor de las 7am y las 6pm). También se destaca que los días de la semana que presentan mayor concentración corresponden a los días viernes con una concentración media alrededor de 700 µg/m³, así como los fines de semana (sábado y domingo) se presentan las menores concentraciones. Se espera que a medida que se recopile una mayor cantidad de información, se pueda realizar un análisis más profundo del comportamiento de este contaminante, teniendo en cuenta que el monitoreo comenzó apenas el día 11 de abril del 2018.

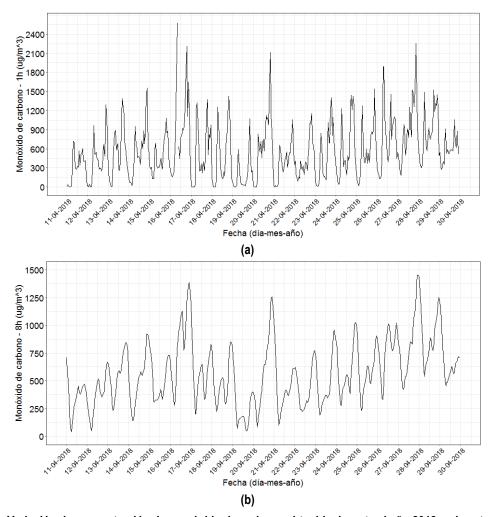


Figura 10. Variación de concentración de monóxido de carbono obtenida durante el año 2018 en la estación GOB.

a) Promedio horario. b) Promedio octohorario.

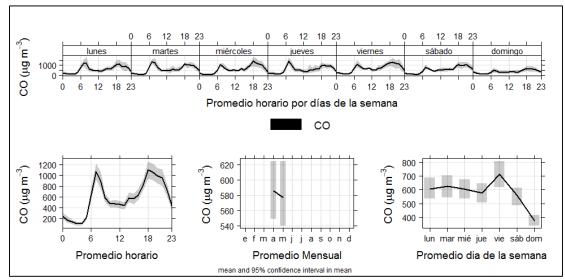


Figura 11. Variación promedio horario, diario y mensual de monóxido de carbono (CO) en la estación Gobernación entre abril y mayo del 2018.

6. CONCLUSIONES

- En ninguna de las estaciones de PM₁₀ en Manizales superaron las normas diarias (100 μg/m³) y anual (50 μg/m³) definidas en la normativa colombiana para este contaminante. Asimismo, todas las estaciones con base en las mediciones fueron clasificadas con buena calidad de aire, según Índice de Calidad del Aire ICA. De otra parte, la única estación de PM_{2.5} (Gobernación) no superó las normas diarias (50 μg/m³) y anual (25 μg/m³) definidas en la normativa colombiana para este contaminante.
- La concentración de material particulado PM₁0 en el aire está fuertemente influenciada por el tráfico vehicular. Los registros de mayor concentración se obtuvieron en las estaciones Liceo y Milán.
- Las concentraciones de ozono troposférico en la estación Gobernación para el periodo enero abril de 2018 se encuentran dentro de los límites permitidos por la normatividad vigente, se identifica la influencia directa de la radiación en el perfil diario de generación de dicho contaminante.
- Las concentraciones de monóxido de carbono en la estación Gobernación para el periodo abril mayo de 2018 se encuentran dentro de los límites permitidos por la normatividad vigente. Este contaminante registra un perfil diurno asociado a mayores concentraciones en periodos del día de alta actividad vehicular y una atmósfera más estable (alrededor de las 7am y 6pm).
- Se identifica mayor concentración de material particulado y monóxido de carbono en días entre semana y una disminución importante durante los fines de semana (sábado y domingo), en todas las estaciones de la ciudad, lo que ratifica la influencia del tráfico vehicular en la dinámica los contaminantes atmosféricos en Manizales.

7. REFERENCIAS

Ministerio de Ambiente y Desarrollo Sostenible (MADS), 2017. Resolución 2254 de 2017. Por la cual se adopta la norma de calidad del aire ambiente y se dictan otras disposiciones. Bogotá, D.C., Colombia.